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Memory effects in friction over correlated surfaces
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We study the effect of a long-range correlated scale-invariant random pinning force on the motion and
friction properties of an elastically driven asperity in a quasistatic regime. It is shown that when the elastic
coupling is weak, the macroscopic dynamic behavior of the asperity can be described as elasto-plastic with a
perfectly plastic plateau. The plastic plateau corresponds to statistically stationary sliding. The macroscopic
friction behavior arises from the competition between reversible and irreversible motion due to the multiplicity
of equilibrium positions. This introduces a history-dependent behavior, with marked memory effects over a
characteristic length scale which is computed. This well-defined length scale is compared to the usual
“memory length” considered in friction experiments. We also analyze the hardening behavior and the hys-
teretic behavior in radial and cyclic loading$1063-651X%97)02702-5

PACS numbsgfs): 05.40:+], 46.30.Pa, 62.20.Fe, 68.35.Rh

[. INTRODUCTION domain of “elastic” loading as could be observed in atomic
force microscopyAFM) [8].

In spite of the rich variety of different rheological behav- (i) What happens for cases where the microscopic contact
iors which can be encountered in solids, the Amonton’s lawdehavior is elastic rather than plastic, going beyond the
of friction have proven to describe the vast majority of dry roughness model of Greenwood and Williamg@}. This
friction mechanical behaviors. These laws stdfethe pro-  occurs for materials such as polymers — where the ratio of
portionality between the tangential friction force and the nor-yield stress over elastic modultypically 1/10 is much
mal load applied to the solids by the so-called “coefficient ofhigher than in metalg¢of order 1/100 — when the surface
friction,” “static” in the case of motionless surfaces, and roughness is lowso that the real area of contact is large and
“dynamic” in the case of relative sliding; an(2) the inde- hence the contact stresses are)ldwis also well established
pendence of the coefficient of friction on the apparent conthat for such elastic contacts, the coefficient of friction de-
tact area between surfaces. pends on the normal loagh contrast to the perfectly plastic

From experimental data, such a coefficient appears, howegime and on the surface roughness, so that no general
ever, to be weakly dependent on the relative velocity of sol-‘universal” behavior can be found.
ids, on contact time, or even on normal Iddd. Attempting (iii) What happens when the interfacial junction stress is
to explain these laws, which have been observed experimeimdependent of the real contact area as in the case of bound-
tally since the time of Leonardo da Vinci, Coulorfib] em-  ary lubricated surfaces.
phasized the role played by interactions between asperities at In the present theoretical study, we focus on the elastic
the surface of solids. Since then, these interactions have beeegime, and we restrict our attention to a fixed normal load.
investigated in a systematic manner, in static as well as iWe propose to retrieve the apparent plasticity of macroscopic
dynamical regime§3,4]. behavior of solids in contact through a purely elastic model,

Tabor gave a justification for these two laws of friction, where contact roughness exhibits long-range correlations.
using the fact that the real contact area is very small and thud/e consider the apparently simple case of one single asper-
involved such large stresses that a significant plastificatioity elastically coupled to the center of mass of a slider and
occurs. Combining yield stress and shear strength, Tabaronstrained to move quasistatically on a rigid rough surface.
proposed the “junction growth model.” This theory led to a In accord with microscopic models for dry friction fre-
link between static and dynamic friction, through the evolu-quently considered in the literatufd0-15, energy dissi-
tion of the contact area, due to plastic deformation of asperipated by friction results entirely from a hysteretic process
ties. Such a model allowed one to interpret successfully feadue to nonlinearity of the pinning force representing surface
tures such as the existence of a “memory length,” orroughness and involving asperities of the interface between
“precursory stable sliding,” or “critical slip distance” ob- blocks. Such models are already used as models for atomic
served experimentally and often presented — although theiiorce microscopy, where the asperity is now the probing tip,
origins are generally diverse — as the “average distancand the elastic coupling accounts for the cantilever beam
needed to break a contacf4—6)]. In these cases, the satura- supporting the tig16—1§.
tion of the interaction force versus the relative displacement We describe the interaction of the asperity with the un-
of solids results from the limitation of the total area of plasticderlying surface through a time-independent scale-invariant

contactg4,7]. random force with long-range correlations, for example, of
However, such a model seems to be inadequate for undeself-affine statistics. Such a force accounts for characteristics
standing the following phenomena. of surfaces frequently encountered in natLi8]. Balancing

(i) Possible hysteresis in friction force remaining in thethe effect of the height correlations with the elastic coupling
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gives rise to a well-defined length scagewhich sets the F(x)
amplitude of the hardening displacement. When the elastic

coupling is soft, the multiplicity of equilibrium positions i
gives rise to a natural decomposition of the displacement of

the center of mass in a reversikildastig part and an unre- G

coverable(plastig one. This partition allows the slider to be
described in the continuum limit by a simple plastic behav-
ior, where dissipation is solely due to the irreversible part of
the displacement. Hardening appears naturally in the prob-
lem through the uneven distribution of rest position of the X
asperity. The length scakecan also be seen as the displace- p

ment over which memory of the initial position is lost, and
below which information on the statistics of the roughness of
the surface is preserved. For such a scale-invariant force pro-
file, the statistical distribution of jumps is analogous to that
of shadows over a self-affine profi[20], and hence it is I
power law distributed up tg. The exponent appearing in the
power-law is directly related to the roughness exponent of
the force distribution.

Hysteretic motion of the asperity and energy dissipation
are studied for cyclic as well as radial displacements im-
posed on the center of mass of the slider. The real asperi
amplitude is shown to vary as a nontrivial power law of the
center of mass amplitude.

FIG. 1. Construction of the stablesymbol @) and unstable
ymbol X) positions for a prescribed slider positipn The full
urve is the random force functida(x), and the dotted line has a
slope—K. G and| are spinodal limits.

namical equation of motion of the asperity. In particular, one
Il. THE MODEL should specify an inertia and a viscous damping term taking

We consider a single asperity with a single degree of freelnto account to first order in velocity the various origins for
dom, its positiorx. This asperity is elastically connected to dissipation. We can, however, circumvent the introduction of

the center of masp of the slider with an equivalent spring Such additional parameters if we assume thahe damping

constant<, and interacts with a random pinning force field (&M is overcriticallarge enough to give rise to a monoto-
F(x) which represents the corrugation of the facifiged nous e_qunengal convergence to a stable re;t p(_)smon, .Wlth
solid. Due to the pinning force acting on the contact, the"® oscillations inx(t)] and(ii) the external forcing is quasi-

slider undergoes elastic deformation characterized by th&t@tic, o thap(t) does not vary significantly over the relax-
elastic displacement of the asperity ation time of the asperity. In this case, we can neglect the

complete time integration of the motiox(t), and assume
u=p—x. (1) that the asperity simply jumps to the first stable equilibrium
position for a giverp(t). In each jump, the damped behavior
For a quasistatic motion of the center of mass of the sliderpf the asperity leads to a discontinuity in the total potential
the elastic displacement self-adjusts in such a way as tenergy, which corresponds to the dissipated energy, and
equilibrate the total force acting instantaneously on the asgives rise to irreversible behavior. The dissipated energy can

perity, so that the position fulfills be seen as the work of an effective friction force, and it can
easily be computed as the area between the fundipg
F(x)+K[x(t)—p(t)]=0. (2)  and a straight line of slope-K which describes the elastic

coupling of the asperity. From the definition of the energy
For any prescribedr(x) function, the above equation has dissipation, we have

generically an odd numbem2-1 of roots, corresponding to

equilibrium positions. Onlyn+1 of these are stable. The Xo+ 8
stability criterion reads Egis— J F(Xg) + Kxg—Kx'—F(x")dx’. 4
Xo
dF(x)/dx+K>0. (3

Figure 2 shows the path followed byas p increases from

Figure 1 shows a graphical construction of the stable an@, to p; and decreases back to its initial value. The shaded
unstablex position for a givery. area in the figure corresponds to the energy dissipated in the

Starting from a stable positiox, for a prescribegh, one  cycle. Under those hypotheses, the evolutiox@) can be
can then simply follow the evolution ok(t) when p(t) seen as a simple geometrical problem.
evolves in time. Such an evolution is governed by the “delay The focus of this work is to consider long-range corre-
rule”: whenever possibl&(t) evolves continuously up to the lated random force profilE(x), and to analyze the statistical
nearest metastable equilibrium position. Without thermal acfeatures of the asperity motion. In order not to introduce an
tivation, the only ambiguity arises when the asperity reachemtrinsic length scale yet in the model, we consider here the
the end of a stable region due to nonlinearity of the pinningsituation wherd=(x) is a self-affine functior(see, e.g., Ref.
force. This ambiguity should be lifted by prescribing the dy-[21] for an introduction, i.e., statistically invariant under the
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5 ‘ ‘ ‘ ‘ The particular problem of the shadow statistics over a
self-affine surface has been considered by Haesah [20].

We simply recall here the main features uncovered in this
analysis. First, there exists a characteristic length sé¢ale
giving the maximum extent of the shadow regions. This
length scale can be obtained by matching the height differ-
ence of the rough profile and that of the incident light rays.
ThusC&°=K¢ or

F(x)

é=(CIK)M79, )

Second, the statistical distribution(s) of the shadow
length 6 can be expressed as

P(8)=1/(£6) (1), ®

0 200 400 - 600 800 1000 where the scaling functios fulfills ¢(x)ox~¢ for x<1 and

¢ decays to zero faster than any power lawXer1. Thus

FIG. 2. Evolution of the asperity position denoted opn the  the number of small jumps of sizé<¢ scales ass™ ' <.

surface of the track during one cycle asncreases fronp, to p; In the following we will use these properties in the analy-
and decreases back to its original positiBnpoints out the begin- Sis of the motion of the asperity first under a monotonic
ning of the motion positionE designates the position fgr=p,,  displacement of the slider, and second in a cyclic evolution.
andR is the position of the asperity whenis returning top,. The
straight lines represent discontinuities in the motion of the asperity. IIl. SLIP STATISTICS
Note that the asperity does not come back to its original position
after the first cycle. The shaded area corresponds to the energy L€t us consider such a steady increase aind study the
dissipated in the jumps, which can be defined as the work of thelistribution of dissipated energdyj;ssin jumps of sizes. The
effective friction force. The lighter part of this area is due to the self-affinity of F imposes thak g scales as the jump size
return path. o, times the force fluctuation ovef, i.e.,

-10

transformatiorx— Ax, F—\‘F, where{ is a characteristic Egiss* e (9)
roughness exponent generally in the range/8<1. An easy , ]

way to construct such a function is through the inverse FouFigure 3 shows the average value B for a fixed 4,
rier transform of a random phase function with an algebrai@Ptained for different coupling constarktsranging from 0 to

power spectrum. Namely, in the numerical simulationsQ-1, and for different roughness exponefitote that for this
shown belowF(x) is computed from particular case, a vanishing spring constant is acceptable pro-

vided x is constrained to lie below the absolute maximum of
, F.) We do observe the expected power-law dependence
F(x)=2>, A(kk Y2tk (5)  (shown as a dotted line on the grapRrom the above men-
. tioned distribution of§ we can deduce easily the statistical

where A(k) is a complex randomly distributed Gaussian distribution of energy dissipatelyss=E as

variable[with usual conjugation propert(k) =A(—k) so p(E)=U(KE)Y(EIKED), (10)
that F is real, whose real and imaginary parts are centered
on 0, and have a unit variance. where s vanishes for arguments larger than 1, and behaves

The scaling invariance oF (x) imposes that the force as a power law for small energieg(x)ox ™ (1+20/(1+4) gg
difference between two points at a distante has the fol-  can be shown in Fig. 4 for various stiffnessésnd various

lowing scaling behavior: roughness exponents.
Without overemphasizing a rather loose analogy, the
([F(x+Ax)—F(x)]?)=C?Ax*, (6)  power-law distribution of such slips may be compared with

the statistical distribution of earthquake magnitudes, which is

whereC is a constant which gives the amplitude of the forceknown to obey the famous “Gutenberg-Richter law,” i.e., a
fluctuation over a unit distance. power-law distributionp(E)<E~*7". In this analogy the

From the geometrical construction of tkeevolution, we  standardb exponent amounts tb=¢/(1+¢). Note, how-
note an interesting correspondence with a shadowing prokever, that in our model there exists an upper cutoff in the
lem. Let us consider the heigh{x) of a rough surface given statistical distribution of energy dissipated in a slip, the ex-
by h(x) =F(x), and imagine that light is shed onto the sur- jstence of which is controversial in the seismology literature.
face from a fixed incidence angksuch that tang) =K. If
one is interested iR positions for increasing, the topogra- IV. TRANSIENTS IN RADIAL LOADING
phy left of the initial starting point should not be considered.
Then the stable regions accessible for the asperity are exactly In this section we wish to analyze the memory effects,
the lit regions of the surface. Conversely, all shadow regionsvhich are associated with the progressive change in the dis-
cannot be reached. tribution of x position as the slider is moved monotonously
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10° L .
10"t .
10° - .
A FIG. 3. Average energy dissipated in jumps of
g 0L ] size d. Different elastic couplingK ranging from
u 0 to 0.1 are considered. The data have been aver-
v 1 aged over 100 profiles of side=16 384 and of
10 + 3 roughness exponeit=0.5.
10° F .
10 ¢ .

10

from a random initial position. We term “radial loading” a obtained for different elastic couplings. We do observe in
monotonous increase of. this plot a nice data collapse onto a master curve. For large
When the slider is put in contact with the solid substrate displacements, the pinning force reaches a saturation plateau
the asperity can assume any position. Therefore the averagehich is independent of the position. This “perfectly plas-
force exerted on the slider is zero, sinde)=0. However, tic” behavior can easily be understood as a state where the
as soon as the slider is moved by a distadcéhe distribu-  slider has lost the memory of its initial position. Whatever
tion of x position is no longer uniform. Obviously should the way the system has been prepared, omdeas been
be stable, but more importantly, it should be accesdiltde,  monotonically increased by a distance equal to the largest
not shadowed from the topography in the ramg¢o x). We  jump size, the statistical properties of tkép) position are
have studied the average for(€) as a function of the im- uniquely defined as theinimumstablex position among all
posed displacement of the slidpr We introduce reduced the possible equilibrium positions for a prescribed The
variables for the displacement and the force using the chaerossover scale is naturalty=1 or p=¢. For smaller slider
acteristic scaleg and KéxK~¥(1=9  respectivelyr=p/¢  displacementp, the pinning force increases with In Fig. 5
and f=(F)/(K¢). Figure 5 shows a plot of versusr as the reduced force is seen to increase linearly witiThe

10 T T T T T T T

1011

1010

10°

10°

10’
— 10° FIG. 4. Statistical distribution of the scaling
Y 10 function ¥ as a function of the renormalized en-
EL} 10° ergy Eg/K£2. Different elastic couplingskK
W ranging from O to 0.1 are considered. The data
< 10 have been averaged over 100 profiles of size

10° L=16 384 and of roughness expongnt 0.5.

10'

10°

107

107
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& Al ' | FIG. 5. Average reduced pinning force
107 ¢ T i E (F)/K¢ as a function of the reduced slider dis-

ol placementp/¢. The average is taken over 100
107 F E profiles.

<F(p)>/(KE)

L | L | i L 1 | [ L
—1

10
p/g

latter linear variation can be justified by considering smallfrom x, to x;=Xy+B. Because of the pinning force, the

p displacements so that at most one jump occurs. Two casesperity does not precisely follow the slider. The amplitude
are to be considered. First, the initialposition can be such B is such that the typical force difference ov@ri.e., CB?

that a jump occurs whep increases. In such a jump, the matches the change in the elastic force exerted by the slider
pinning force decreases by a fixed amount independent ain the asperity, i.e. K(A—B). This provides the required

r. The jump probability, on the contrary, dependsrorand  asperity cycle amplitude

for small distances, it grows in proportion to Thus the
mean contribution of jumps is a net decrease of the pinning
force proportional ta. Second, if no jump occurs, the pin-
ning force increases linearly withwith a slope equal to the
mean force gradient estimated on stable regiond\s in the preceding section we introduce reduced amplitudes
(dF/dx>—K). The total expectation value of the pinning a=A/¢ andb=B/{, so that we have

force change is thus linear, and has to be a net increase, B ¢

consistently with the numerical results. The second contribu- a=b+b". (12)
tion being the dominant one, it is natural to term this first
loading phase “elastic,” sincenostof the force increase is

A=B+|—|Bi=B+¢

B\¢
E) . (17

Thus two regimes have to be distinguished: for lawl

; . . ) i o alll _ A(1-01%_
recoverable. We will see in fact in the next section that theAMplitudes, we havé~a t—qltmor L whereas for
unrecoverable part of the displacement is not zero but i§r9e amplitudea>1, we haveb~a—a*—---.
much smaller than the elastic one. Figure 6 shows a plot db versusa displaying the two

As a final remark in this section, we would like to empha- expec_ted behaviors.. From the aboye argument, to derive the
size that the difference between the pinning force and th@Sperity cycle amplitude, we again note thatgives the
friction force is only superficial. Whereas the former is de-memory length scale over which the asperity is slaved on the
fined as the average ford&(x) acting on the asperity, the average to the slider motion. Belpw this scale_the self_-af_fme
latter is defined through the averaged dissipated energy p&ature of the force profile gives rise toa npntnwal yar|at|on
unit distance traveled by the slider. However, integrating the®f b versusa. For low amplitude of the slider motion, the
equations of motion, it can easily be seen that the differenc@SPerity is “pinned” in a local region and does not explore
between the two forces is only the difference in potentiaimuch of the facing surface.

energy between the beginning and the end of the motion. Once the amplitude of the asperity cycle has been deter-
mined, we can have access to the energy dissipated in a

cycle. This energyE s iS again turned into a reduced vari-
able, by scaling it withK £2, e=Eyss/(K£2). For small am-

We now consider friction hysteric behavior when a cyclic plitude, a<1, the largest jump encountered in the asperity
motion is imposed on the slider. We first notice that startingmotion is proportional to the asperity amplitude, so that the
from any initial state, after one period, the asperity reaches &nergy dissipation is simply proportional bd*¢ as a result
cyclic motion. of Eq.(9). Thusexa®*9’¢, When the amplitude gets larger,

The imposed motion of the slider is a cycle in the rangea>1, then the energy dissipated in one cycle is proportional
po to p1=po+A. We are first interested in the amplitude of to the number of largest jum@/¢ times the energy dissi-
the limit cycle of the asperity which explores the interval pated in such a jump, henee:a.

V. CYCLIC BEHAVIOR
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1070 ¢ E
10° + 4
10' ¢ 5
wr FIG. 6. Reduced asperity displacement ampli-
0 . .
3 10 ¢ 3 tude Ax/¢ versus reduced slider amplitude

Apl&. Average considered over 100 samples and
ten different elastic coupling from 0 to 0.1.

10 10 10 w1 10 10 10 10"
Aprg
Figure 7 shows the reduced energy dissipatoversus VI. PLASTICITY

Ejh;tarigH;Sgesgsglreanr?ep;l;ugﬁér\g/e d?sgs?g;tzzsfirrv\?aﬁo%goecia _ The plasticity appears here as a macroscopic irreversibil-
tic couplings, and the two above described regimes. ﬁy ,Sf the dynam|qal behavior of the asperity.

g rom the previously reported analysis, we see that the
__In the particular case of uncorrelated surfaces, the behaypseryed mean behavior of the two solids in contact can be
ior of the pinning force exhibits only a perfect plastic pla- accurately described as elasto-plastic with a perfect plasticity
teau. For Greenwood-Williamson surfad@s, for example,  pjateau. This correspondence is actually deeper than just an
where bumps of radius of curvatuReare exponentially dis- jmage deduced from the shape of the force versus displace-
tributed in height without correlations , the regime at smallment plots.
displacemeni p is dominated by the correlations induced by ~ One basic step in the description of an elasto-plastic con-
the nonzero radius of curvatuRe and the continuity condi- stitutive law is the partition of the strain into an elastic re-
tion for the surface. At larger displacements, the dissipativeoverable part and an irreversible plastic strain. In our case,
energy is dominated by the energy dissipated over largeuch a partition has a clear origin: the plastic displacement
jumps of size¢ scaling in 1K. corresponds to the jumps. It is the only component which

10 T T T T
10 +
10° -
10° +
10' -
10° -
10" ¢ FIG. 7. Reduced energy dissipation
. 107 L Egiss/ (KE?) versus reduced slider amplitude
ur 0 | Apl €. Average considered over 100 samples of
< . size L=16 384, of various roughness exponents
10 £=0.3,7=0.5 and for different elastic couplings
10° L K from O to 1.
10°
107 -
10°
10°
10" L
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induces energy dissipation. The total displacement of the a®r intrinsic time evolution of the mechanical properties, but
perity also contains an additional component which correappears as an unavoidable consequence of the instability
sponds to the motion along stable regions of the force profilemodel of Ref.[12]. Of course, such a model does not take
This part is reversible and contributes solely to the potentiajnto account evolution of the static friction coefficient versus
energy of the system. The previous study showed that, fogontact time. The study of this dependence would require at
smallp displacements{<¢), the elastic contributionip to |east introduction of thermal activation. However, separation
the average pinning force is dominant. This is due to the fachetween static and dynamic mechanisms is not in contradic-
that thex behavior is dominated by the increasing delaytion with the marked difference observed in temperature-
distance between asperity and slider center of masgependent experimenf&4].
x~p'*<p due to the roughness of the surface, so that finally Restricting to the present study, note that the stick behav-
ior is characterized essentially by a strong slowing down due
Fo(p)=~Kp. 13 roughness and by an irreversible behavior progressively

Such an “elastic regime” goes together with a gradual hard_overwhelmlng the elastic component of the displacement.

ening — the jumps remaining an essential component of th‘Eieal stick could appear only in the case of uncorrelated sur-

. . aces, where the asperity motion is completely decorrelated
motion on the faf‘dom surfaces. Hoyvever, forllarge dISpIacef'rom the center of rr?assymotion over Ier?gth gcales compa-
ments, the contribution due to the jump dominates. The as- ble to the cutoff. In such case,s the scaling of the charac-

. : a
perity follows on average the motion of the center of mass of_ . . ) .
the slider, so that a sg'][ationary regime is reached, and th ristic length¢ in LK does not depend on the probability

maximum jump size saturates. The average pinning force igaw. . .
Jump gep g The characteristic lengtl§ is shown to depend on the

constant, . .
elastic constanK of the slider, on the roughness exponent
Fo(p)~KE. (14) § and on the amplitude of the roughn_ess of the_ tréatk
fixed length scale Respective contributions of slider and
This regime is assimilated to a “sliding” regime. track properties are asymmetric. More realistic description of

The “elastic” behavior of the asperity is then due to pin- friction must take into account the correlations between mul-

ning on the random force. As the driving force is increasedtiple asperities of the slider as well as elastic properties of the
pinning vanishes — gradually in the case of long-range finitdrack considered, for instance, as infinitely rigid. Such a
correlations of the pinning force or suddenly in the case ofnodel could, however, be of interest for interpreting AFM
uncorrelated pinning force — giving rise at the end to ameasurements].
stationary “sliding” behavior. Nevertheless, the restriction to a one-dimensional variable
The key feature which introduces some variance as comX does not prevent any application to collective interactions.
pared to the standard plasticity description is the accompa>ome systems are well described, in the limit of weak dis-
nying statistical feature of the jump distribution, with power- tortions, by a comparable one-variable equation, whede-
law distribution up to a limiting intrinsic scale which scales notes the average position of the system and where the pin-
with the stiffness of the system. ning forceF (x) is replaced by an effective force obtained by
Note, however, that such statistical reasoning assume®inimizing the pinning force over the other variables. It is,
that the observed range of scalinglasge compared to the for example, the case of a fluid interface in contact with a
lower cutoff of the random force. Inversely, the “elastic do- heterogeneous solid surfaf25]. In this case, the perturba-
main” is observableébelowthe characteristic lengt. tion induced by a local force applied on the contact line heals
We conclude, emphasizing that the plasticity results enon a distance of the order of the capillary length taken as the
tirely from the nonlinear coupling between volume elasticsize of the system. The pinning force is due to the interaction
properties of the slider and surface roughness properties &f the contact line with defects on the solid surface. The

the track. It thus does not require any irreversible process iffaction results from the combined effects of gravity and of
the bulk of the slider. surface tension on the interface. The motion is imposed on

the solid dipped into the liquid bath. Such a system exhibits
hysteresis in the average position of the contact line, thus in
the contact angl®.

The existence of an internal length over which the friction In the quite different domain of seismic faulting, Scholz
properties evolve has been recognized for some time, an@6] proposed considering analogous distance for interpret-
thus different rheological models have been proposed to adng the depth dependence of the “critical slip distance,” a
count for it[22,23, through the introduction of internal vari- crucial feature for earthquake modeling. However, the argu-
ables. Using simple description of the topography as consisment proposed in this last reference is based on the elastic
ing in isolated bumps, this distance is usually interpreted irmating of the two facing surfaces which is shown to occur
terms of “distance between bumps,” or “distance needed toabove a pressure-dependent wavelength. The identification
break a contact,” which remains to be more firmly justified. between¢ and the maximum wavelength of the elastically

In the case of the Ruina modg3], the constitutive law deformed fault is not firmly established but rather argued for,
of internal variables depends on time and describes the phesing criteria such as “complete renewal of contact popula-
nomenological evolution of the properties of the surfaces ofion.” Although the conclusions may be qualitatively com-
solids in contact. In our case, the hardening — appearingared to that of our moddthe critical slip distance results
through the dynamical behavior of the asperities at surfacekom the competition of the surface topography and the elas-
— does not need any modification of the surfaces in contactjc coupling and is not intrinsic to the material or surface

VII. DISCUSSION
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topography, the approach to the problem is quite different scaleé. After the slider has traveled a distance of oréethe

and any further comparison appears difficult. friction force reaches a nonzero average, although a spatial
average of the random foré¢eis null. This difference comes
VIIl. CONCLUSION from the bias introduced by the uneven distribution of the

. ) ) ) ) position of the asperity.

The friction law involving asperity behavior appears to be'  The persistence of a hysteretic behavior even in the “elas-
an idealization of phenom_ena occurring close to the intergjc» part of the force-displacement curve comes from the
face, and the bulk properties of the solid can never be forrandomness of the pinning force. The long-range correlations
gotten. We have presented a model where the effective fricss this force allow the slider to advance elastically. In the
tion law results from the competition of the random case of an uncorrelated surface, such an elastic regime does
interaction potential on the surface and the elastic propertiegot exist.
of the.solid(here reduced to the elastic cou_pling between the Memory effects are analyzed for cyclic loadings, and it is
asperity and the center of mass of the §)oI|d ) _shown that the real amplitude of motion of the asperity is

In the apparently simple case of a single asperity drivernych smaller than that imposed on the center of mass of the
quasistatically on a rough track, we have shown the existyjiger, for amplitude smaller than the characteristic seale
ence of a well-defined scalf which separates two distinct ge|ow this scale, the behavior of the system is seen to pre-
regimes. This length scale emerges from the competition b&serye statistical information on the roughness of the track

tween the elastic coupling and the rapidly varying randomyng to be affected by its history.
force field affecting the asperity. It depends on the stiffness

of the slider as well as on the roughness exporecitarac-

terizing the long-range correlations of the roughness of the ACKNOWLEDGMENTS
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