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Memory effects in friction over correlated surfaces
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We study the effect of a long-range correlated scale-invariant random pinning force on the motion and
friction properties of an elastically driven asperity in a quasistatic regime. It is shown that when the elastic
coupling is weak, the macroscopic dynamic behavior of the asperity can be described as elasto-plastic with a
perfectly plastic plateau. The plastic plateau corresponds to statistically stationary sliding. The macroscopic
friction behavior arises from the competition between reversible and irreversible motion due to the multiplicity
of equilibrium positions. This introduces a history-dependent behavior, with marked memory effects over a
characteristic length scale which is computed. This well-defined length scale is compared to the usual
‘‘memory length’’ considered in friction experiments. We also analyze the hardening behavior and the hys-
teretic behavior in radial and cyclic loadings.@S1063-651X~97!02702-5#

PACS number~s!: 05.40.1j, 46.30.Pa, 62.20.Fe, 68.35.Rh
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I. INTRODUCTION

In spite of the rich variety of different rheological beha
iors which can be encountered in solids, the Amonton’s la
of friction have proven to describe the vast majority of d
friction mechanical behaviors. These laws state~1! the pro-
portionality between the tangential friction force and the n
mal load applied to the solids by the so-called ‘‘coefficient
friction,’’ ‘‘static’’ in the case of motionless surfaces, an
‘‘dynamic’’ in the case of relative sliding; and~2! the inde-
pendence of the coefficient of friction on the apparent c
tact area between surfaces.

From experimental data, such a coefficient appears, h
ever, to be weakly dependent on the relative velocity of s
ids, on contact time, or even on normal load@1#. Attempting
to explain these laws, which have been observed experim
tally since the time of Leonardo da Vinci, Coulomb@2# em-
phasized the role played by interactions between asperitie
the surface of solids. Since then, these interactions have
investigated in a systematic manner, in static as well a
dynamical regimes@3,4#.

Tabor gave a justification for these two laws of frictio
using the fact that the real contact area is very small and
involved such large stresses that a significant plastifica
occurs. Combining yield stress and shear strength, Ta
proposed the ‘‘junction growth model.’’ This theory led to
link between static and dynamic friction, through the evo
tion of the contact area, due to plastic deformation of asp
ties. Such a model allowed one to interpret successfully
tures such as the existence of a ‘‘memory length,’’
‘‘precursory stable sliding,’’ or ‘‘critical slip distance’’ ob-
served experimentally and often presented — although t
origins are generally diverse — as the ‘‘average dista
needed to break a contact’’@4–6#. In these cases, the satur
tion of the interaction force versus the relative displacem
of solids results from the limitation of the total area of plas
contacts@4,7#.

However, such a model seems to be inadequate for un
standing the following phenomena.

~i! Possible hysteresis in friction force remaining in t
551063-651X/97/55~3!/2166~8!/$10.00
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domain of ‘‘elastic’’ loading as could be observed in atom
force microscopy~AFM! @8#.

~ii ! What happens for cases where the microscopic con
behavior is elastic rather than plastic, going beyond
roughness model of Greenwood and Williamson@9#. This
occurs for materials such as polymers — where the ratio
yield stress over elastic moduli~typically 1/10! is much
higher than in metals~of order 1/100! — when the surface
roughness is low~so that the real area of contact is large a
hence the contact stresses are low!. It is also well established
that for such elastic contacts, the coefficient of friction d
pends on the normal load~in contrast to the perfectly plasti
regime! and on the surface roughness, so that no gen
‘‘universal’’ behavior can be found.

~iii ! What happens when the interfacial junction stress
independent of the real contact area as in the case of bo
ary lubricated surfaces.

In the present theoretical study, we focus on the ela
regime, and we restrict our attention to a fixed normal lo
We propose to retrieve the apparent plasticity of macrosco
behavior of solids in contact through a purely elastic mod
where contact roughness exhibits long-range correlatio
We consider the apparently simple case of one single as
ity elastically coupled to the center of mass of a slider a
constrained to move quasistatically on a rigid rough surfa
In accord with microscopic models for dry friction fre
quently considered in the literature@10–15#, energy dissi-
pated by friction results entirely from a hysteretic proce
due to nonlinearity of the pinning force representing surfa
roughness and involving asperities of the interface betw
blocks. Such models are already used as models for ato
force microscopy, where the asperity is now the probing
and the elastic coupling accounts for the cantilever be
supporting the tip@16–18#.

We describe the interaction of the asperity with the u
derlying surface through a time-independent scale-invar
random force with long-range correlations, for example,
self-affine statistics. Such a force accounts for characteris
of surfaces frequently encountered in nature@19#. Balancing
the effect of the height correlations with the elastic coupli
2166 © 1997 The American Physical Society
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55 2167MEMORY EFFECTS IN FRICTION OVER CORRELATED . . .
gives rise to a well-defined length scalej which sets the
amplitude of the hardening displacement. When the ela
coupling is soft, the multiplicity of equilibrium position
gives rise to a natural decomposition of the displacemen
the center of mass in a reversible~elastic! part and an unre-
coverable~plastic! one. This partition allows the slider to b
described in the continuum limit by a simple plastic beha
ior, where dissipation is solely due to the irreversible part
the displacement. Hardening appears naturally in the p
lem through the uneven distribution of rest position of t
asperity. The length scalej can also be seen as the displac
ment over which memory of the initial position is lost, an
below which information on the statistics of the roughness
the surface is preserved. For such a scale-invariant force
file, the statistical distribution of jumps is analogous to th
of shadows over a self-affine profile@20#, and hence it is
power law distributed up toj. The exponent appearing in th
power-law is directly related to the roughness exponen
the force distribution.

Hysteretic motion of the asperity and energy dissipat
are studied for cyclic as well as radial displacements
posed on the center of mass of the slider. The real asp
amplitude is shown to vary as a nontrivial power law of t
center of mass amplitude.

II. THE MODEL

We consider a single asperity with a single degree of fr
dom, its positionx. This asperity is elastically connected
the center of massr of the slider with an equivalent sprin
constantK, and interacts with a random pinning force fie
F(x) which represents the corrugation of the facing~fixed!
solid. Due to the pinning force acting on the contact,
slider undergoes elastic deformation characterized by
elastic displacement of the asperity

u5r2x. ~1!

For a quasistatic motion of the center of mass of the slid
the elastic displacement self-adjusts in such a way a
equilibrate the total force acting instantaneously on the
perity, so that the positionx fulfills

F~x!1K@x~ t !2r~ t !#50 . ~2!

For any prescribedF(x) function, the above equation ha
generically an odd number 2n11 of roots, corresponding to
equilibrium positions. Onlyn11 of these are stable. Th
stability criterion reads

dF~x!/dx1K.0 . ~3!

Figure 1 shows a graphical construction of the stable
unstablex position for a givenr.

Starting from a stable positionx, for a prescribedr, one
can then simply follow the evolution ofx(t) when r(t)
evolves in time. Such an evolution is governed by the ‘‘de
rule’’: whenever possiblex(t) evolves continuously up to th
nearest metastable equilibrium position. Without thermal
tivation, the only ambiguity arises when the asperity reac
the end of a stable region due to nonlinearity of the pinn
force. This ambiguity should be lifted by prescribing the d
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namical equation of motion of the asperity. In particular, o
should specify an inertia and a viscous damping term tak
into account to first order in velocity the various origins f
dissipation. We can, however, circumvent the introduction
such additional parameters if we assume that~i! the damping
term is overcritical@large enough to give rise to a monoto
nous exponential convergence to a stable rest position,
no oscillations inx(t)# and~ii ! the external forcing is quasi
static, so thatr(t) does not vary significantly over the relax
ation time of the asperity. In this case, we can neglect
complete time integration of the motionx(t), and assume
that the asperity simply jumps to the first stable equilibriu
position for a givenr(t). In each jump, the damped behavi
of the asperity leads to a discontinuity in the total poten
energy, which corresponds to the dissipated energy,
gives rise to irreversible behavior. The dissipated energy
be seen as the work of an effective friction force, and it c
easily be computed as the area between the functionF(x)
and a straight line of slope2K which describes the elasti
coupling of the asperity. From the definition of the ener
dissipation, we have

Ediss5E
x0

x01d
F~x0!1Kx02Kx82F~x8!dx8. ~4!

Figure 2 shows the path followed byx asr increases from
r0 to r1 and decreases back to its initial value. The shad
area in the figure corresponds to the energy dissipated in
cycle. Under those hypotheses, the evolution ofx(t) can be
seen as a simple geometrical problem.

The focus of this work is to consider long-range corr
lated random force profileF(x), and to analyze the statistica
features of the asperity motion. In order not to introduce
intrinsic length scale yet in the model, we consider here
situation whereF(x) is a self-affine function~see, e.g., Ref.
@21# for an introduction!, i.e., statistically invariant under th

FIG. 1. Construction of the stable~symbol d) and unstable
~symbol3) positions for a prescribed slider positionr. The full
curve is the random force functionF(x), and the dotted line has a
slope2K. G and I are spinodal limits.
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2168 55ANNE TANGUY AND STÉPHANE ROUX
transformationx→lx, F→lzF, wherez is a characteristic
roughness exponent generally in the range 0,z,1. An easy
way to construct such a function is through the inverse F
rier transform of a random phase function with an algebr
power spectrum. Namely, in the numerical simulatio
shown below,F(x) is computed from

F~x!5(
k
A~k!k21/22ze2 ikx, ~5!

where A(k) is a complex randomly distributed Gaussi
variable@with usual conjugation propertyĀ(k)5A(2k) so
that F is real#, whose real and imaginary parts are cente
on 0, and have a unit variance.

The scaling invariance ofF(x) imposes that the force
difference between two points at a distanceDx has the fol-
lowing scaling behavior:

^@F~x1Dx!2F~x!#2&5C2Dx2z, ~6!

whereC is a constant which gives the amplitude of the for
fluctuation over a unit distance.

From the geometrical construction of thex evolution, we
note an interesting correspondence with a shadowing p
lem. Let us consider the heighth(x) of a rough surface given
by h(x)5F(x), and imagine that light is shed onto the su
face from a fixed incidence angleu such that tan(u)5K. If
one is interested inx positions for increasingr, the topogra-
phy left of the initial starting point should not be considere
Then the stable regions accessible for the asperity are ex
the lit regions of the surface. Conversely, all shadow regi
cannot be reached.

FIG. 2. Evolution of the asperity position denoted byx on the
surface of the track during one cycle asr increases fromr0 to r1

and decreases back to its original position.B points out the begin-
ning of the motion position,E designates the position forr5r1,
andR is the position of the asperity whenr is returning tor0. The
straight lines represent discontinuities in the motion of the aspe
Note that the asperity does not come back to its original posi
after the first cycle. The shaded area corresponds to the en
dissipated in the jumps, which can be defined as the work of
effective friction force. The lighter part of this area is due to t
return path.
-
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The particular problem of the shadow statistics ove
self-affine surface has been considered by Hansenet al. @20#.
We simply recall here the main features uncovered in t
analysis. First, there exists a characteristic length scalj
giving the maximum extent of the shadow regions. Th
length scale can be obtained by matching the height dif
ence of the rough profile and that of the incident light ra
ThusCjz5Kj or

j5~C/K !1/~12z!. ~7!

Second, the statistical distributionp(d) of the shadow
lengthd can be expressed as

p~d!51/~jd!f~d/j!, ~8!

where the scaling functionf fulfills f(x)}x2z for x!1 and
f decays to zero faster than any power law forx@1. Thus
the number of small jumps of sized!j scales asd212z.

In the following we will use these properties in the ana
sis of the motion of the asperity first under a monoton
displacement of the slider, and second in a cyclic evoluti

III. SLIP STATISTICS

Let us consider such a steady increase ofr and study the
distribution of dissipated energyEdiss in jumps of sized. The
self-affinity of F imposes thatEdiss scales as the jump siz
d, times the force fluctuation overd, i.e.,

Ediss}d11z. ~9!

Figure 3 shows the average value ofEdiss for a fixed d,
obtained for different coupling constantsK ranging from 0 to
0.1, and for different roughness exponents.~Note that for this
particular case, a vanishing spring constant is acceptable
videdx is constrained to lie below the absolute maximum
F.! We do observe the expected power-law depende
~shown as a dotted line on the graph!. From the above men
tioned distribution ofd we can deduce easily the statistic
distribution of energy dissipatedEdiss5E as

p~E!51/~Kj3!c~E/Kj2!, ~10!

wherec vanishes for arguments larger than 1, and beha
as a power law for small energies,c(x)}x2(112z)/(11z), as
can be shown in Fig. 4 for various stiffnessesK and various
roughness exponents.

Without overemphasizing a rather loose analogy,
power-law distribution of such slips may be compared w
the statistical distribution of earthquake magnitudes, whic
known to obey the famous ‘‘Gutenberg-Richter law,’’ i.e.,
power-law distributionp(E)}E212b. In this analogy the
standardb exponent amounts tob5z/(11z). Note, how-
ever, that in our model there exists an upper cutoff in
statistical distribution of energy dissipated in a slip, the e
istence of which is controversial in the seismology literatu

IV. TRANSIENTS IN RADIAL LOADING

In this section we wish to analyze the memory effec
which are associated with the progressive change in the
tribution of x position as the slider is moved monotonous
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FIG. 3. Average energy dissipated in jumps
sized. Different elastic couplingsK ranging from
0 to 0.1 are considered. The data have been a
aged over 100 profiles of sizeL516 384 and of
roughness exponentz50.5.
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from a random initial position. We term ‘‘radial loading’’ a
monotonous increase ofr.

When the slider is put in contact with the solid substra
the asperity can assume any position. Therefore the ave
force exerted on the slider is zero, since^F&50. However,
as soon as the slider is moved by a distanced, the distribu-
tion of x position is no longer uniform. Obviouslyx should
be stable, but more importantly, it should be accessible~i.e.,
not shadowed from the topography in the rangex0 to x). We
have studied the average force^F& as a function of the im-
posed displacement of the sliderr. We introduce reduced
variables for the displacement and the force using the c
acteristic scalesj andKj}K2z/(12z), respectively,r5r/j
and f5^F&/(Kj). Figure 5 shows a plot off versusr as
,
ge

r-

obtained for different elastic couplings. We do observe
this plot a nice data collapse onto a master curve. For la
displacements, the pinning force reaches a saturation pla
which is independent of the position. This ‘‘perfectly pla
tic’’ behavior can easily be understood as a state where
slider has lost the memory of its initial position. Whatev
the way the system has been prepared, oncer has been
monotonically increased by a distance equal to the larg
jump size, the statistical properties of thex(r) position are
uniquely defined as theminimumstablex position among all
the possible equilibrium positions for a prescribedr. The
crossover scale is naturallyr51 or r5j. For smaller slider
displacementsr, the pinning force increases withr. In Fig. 5
the reduced force is seen to increase linearly withr . The
g
-

ta
ize
FIG. 4. Statistical distribution of the scalin
functionC as a function of the renormalized en
ergy Ediss/Kj2. Different elastic couplingsK
ranging from 0 to 0.1 are considered. The da
have been averaged over 100 profiles of s
L516 384 and of roughness exponentz50.5.
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FIG. 5. Average reduced pinning forc
^F&/Kj as a function of the reduced slider dis
placementr/j. The average is taken over 10
profiles.
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latter linear variation can be justified by considering sm
r displacements so that at most one jump occurs. Two c
are to be considered. First, the initialx position can be such
that a jump occurs whenr increases. In such a jump, th
pinning force decreases by a fixed amount independen
r . The jump probability, on the contrary, depends onr , and
for small distances, it grows in proportion tor . Thus the
mean contribution of jumps is a net decrease of the pinn
force proportional tor . Second, if no jump occurs, the pin
ning force increases linearly withr with a slope equal to the
mean force gradient estimated on stable regi
(dF/dx.2K). The total expectation value of the pinnin
force change is thus linear, and has to be a net incre
consistently with the numerical results. The second contri
tion being the dominant one, it is natural to term this fi
loading phase ‘‘elastic,’’ sincemostof the force increase is
recoverable. We will see in fact in the next section that
unrecoverable part of the displacement is not zero bu
much smaller than the elastic one.

As a final remark in this section, we would like to emph
size that the difference between the pinning force and
friction force is only superficial. Whereas the former is d
fined as the average forceF(x) acting on the asperity, the
latter is defined through the averaged dissipated energy
unit distance traveled by the slider. However, integrating
equations of motion, it can easily be seen that the differe
between the two forces is only the difference in poten
energy between the beginning and the end of the motion

V. CYCLIC BEHAVIOR

We now consider friction hysteric behavior when a cyc
motion is imposed on the slider. We first notice that start
from any initial state, after one period, the asperity reache
cyclic motion.

The imposed motion of the slider is a cycle in the ran
r0 to r15r01A. We are first interested in the amplitude
the limit cycle of the asperity which explores the interv
ll
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from x0 to x15x01B. Because of the pinning force, th
asperity does not precisely follow the slider. The amplitu
B is such that the typical force difference overB, i.e.,CBz

matches the change in the elastic force exerted by the s
on the asperity, i.e.,K(A2B). This provides the required
asperity cycle amplitude

A5B1SCK DBz5B1jSBj D z

. ~11!

As in the preceding section we introduce reduced amplitu
a5A/j andb5B/j, so that we have

a5b1bz. ~12!

Thus two regimes have to be distinguished: for lowa!1
amplitudes, we haveb'a1/z2a(12z)/z22•••, whereas for
large amplitudea@1, we haveb'a2az2•••.

Figure 6 shows a plot ofb versusa displaying the two
expected behaviors. From the above argument, to derive
asperity cycle amplitude, we again note thatj gives the
memory length scale over which the asperity is slaved on
average to the slider motion. Below this scale the self-affi
nature of the force profile gives rise to a nontrivial variati
of b versusa. For low amplitude of the slider motion, th
asperity is ‘‘pinned’’ in a local region and does not explo
much of the facing surface.

Once the amplitude of the asperity cycle has been de
mined, we can have access to the energy dissipated
cycle. This energyEdiss is again turned into a reduced var
able, by scaling it withKj2, e5Ediss/(Kj2). For small am-
plitude, a!1, the largest jump encountered in the asper
motion is proportional to the asperity amplitude, so that
energy dissipation is simply proportional tob11z as a result
of Eq. ~9!. Thuse}a(11z)/z. When the amplitude gets large
a@1, then the energy dissipated in one cycle is proportio
to the number of largest jumpsB/j times the energy dissi
pated in such a jump, hencee}a.
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FIG. 6. Reduced asperity displacement amp
tude Dx/j versus reduced slider amplitud
Dr/j. Average considered over 100 samples a
ten different elastic couplingsK from 0 to 0.1.
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Figure 7 shows the reduced energy dissipatione versus
the reduced slider amplitudea. We again observe a goo
data collapse of the mean energy dissipated for various e
tic couplings, and the two above described regimes.

In the particular case of uncorrelated surfaces, the beh
ior of the pinning force exhibits only a perfect plastic pl
teau. For Greenwood-Williamson surfaces@9#, for example,
where bumps of radius of curvatureR are exponentially dis-
tributed in height without correlations , the regime at sm
displacementDr is dominated by the correlations induced
the nonzero radius of curvatureR and the continuity condi-
tion for the surface. At larger displacements, the dissipa
energy is dominated by the energy dissipated over la
jumps of sizej scaling in 1/K.
s-

v-

ll

e
e

VI. PLASTICITY

The plasticity appears here as a macroscopic irrevers
ity of the dynamical behavior of the asperity.

From the previously reported analysis, we see that
observed mean behavior of the two solids in contact can
accurately described as elasto-plastic with a perfect plast
plateau. This correspondence is actually deeper than jus
image deduced from the shape of the force versus displ
ment plots.

One basic step in the description of an elasto-plastic c
stitutive law is the partition of the strain into an elastic r
coverable part and an irreversible plastic strain. In our ca
such a partition has a clear origin: the plastic displacem
corresponds to the jumps. It is the only component wh
n
e
of
ts
s

FIG. 7. Reduced energy dissipatio
Ediss/(Kj2) versus reduced slider amplitud
Dr/j. Average considered over 100 samples
size L516 384, of various roughness exponen
z50.3, z50.5 and for different elastic coupling
K from 0 to 1.
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2172 55ANNE TANGUY AND STÉPHANE ROUX
induces energy dissipation. The total displacement of the
perity also contains an additional component which cor
sponds to the motion along stable regions of the force pro
This part is reversible and contributes solely to the poten
energy of the system. The previous study showed that,
smallr displacements (r!j), the elastic contribution inr to
the average pinning force is dominant. This is due to the
that the x behavior is dominated by the increasing del
distance between asperity and slider center of m
x'r1/z!r due to the roughness of the surface, so that fina

Fp~r!'Kr. ~13!

Such an ‘‘elastic regime’’ goes together with a gradual ha
ening — the jumps remaining an essential component of
motion on the random surfaces. However, for large displa
ments, the contribution due to the jump dominates. The
perity follows on average the motion of the center of mass
the slider, so that a stationary regime is reached, and
maximum jump size saturates. The average pinning forc
constant,

Fp~r!'Kj. ~14!

This regime is assimilated to a ‘‘sliding’’ regime.
The ‘‘elastic’’ behavior of the asperity is then due to pi

ning on the random force. As the driving force is increas
pinning vanishes — gradually in the case of long-range fin
correlations of the pinning force or suddenly in the case
uncorrelated pinning force — giving rise at the end to
stationary ‘‘sliding’’ behavior.

The key feature which introduces some variance as c
pared to the standard plasticity description is the accom
nying statistical feature of the jump distribution, with powe
law distribution up to a limiting intrinsic scale which scale
with the stiffness of the system.

Note, however, that such statistical reasoning assu
that the observed range of scaling islarge compared to the
lower cutoff of the random force. Inversely, the ‘‘elastic d
main’’ is observablebelow the characteristic lengthj.

We conclude, emphasizing that the plasticity results
tirely from the nonlinear coupling between volume elas
properties of the slider and surface roughness propertie
the track. It thus does not require any irreversible proces
the bulk of the slider.

VII. DISCUSSION

The existence of an internal length over which the fricti
properties evolve has been recognized for some time,
thus different rheological models have been proposed to
count for it @22,23#, through the introduction of internal vari
ables. Using simple description of the topography as cons
ing in isolated bumps, this distance is usually interpreted
terms of ‘‘distance between bumps,’’ or ‘‘distance needed
break a contact,’’ which remains to be more firmly justifie

In the case of the Ruina model@23#, the constitutive law
of internal variables depends on time and describes the
nomenological evolution of the properties of the surfaces
solids in contact. In our case, the hardening — appea
through the dynamical behavior of the asperities at surfa
— does not need any modification of the surfaces in cont
s-
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or intrinsic time evolution of the mechanical properties, b
appears as an unavoidable consequence of the insta
model of Ref.@12#. Of course, such a model does not ta
into account evolution of the static friction coefficient vers
contact time. The study of this dependence would requir
least introduction of thermal activation. However, separat
between static and dynamic mechanisms is not in contra
tion with the marked difference observed in temperatu
dependent experiments@24#.

Restricting to the present study, note that the stick beh
ior is characterized essentially by a strong slowing down d
to roughness and by an irreversible behavior progressiv
overwhelming the elastic component of the displaceme
Real stick could appear only in the case of uncorrelated
faces, where the asperity motion is completely decorrela
from the center of mass motion, over length scales com
rable to the cutoff. In such cases, the scaling of the cha
teristic lengthj in 1/K does not depend on the probabili
law.

The characteristic lengthj is shown to depend on th
elastic constantK of the slider, on the roughness expone
z, and on the amplitude of the roughness of the track~at
fixed length scale!. Respective contributions of slider an
track properties are asymmetric. More realistic description
friction must take into account the correlations between m
tiple asperities of the slider as well as elastic properties of
track considered, for instance, as infinitely rigid. Such
model could, however, be of interest for interpreting AF
measurements@8#.

Nevertheless, the restriction to a one-dimensional varia
x does not prevent any application to collective interactio
Some systems are well described, in the limit of weak d
tortions, by a comparable one-variable equation, wherex de-
notes the average position of the system and where the
ning forceF(x) is replaced by an effective force obtained b
minimizing the pinning force over the other variables. It
for example, the case of a fluid interface in contact with
heterogeneous solid surface@25#. In this case, the perturba
tion induced by a local force applied on the contact line he
on a distance of the order of the capillary length taken as
size of the system. The pinning force is due to the interact
of the contact line with defects on the solid surface. T
traction results from the combined effects of gravity and
surface tension on the interface. The motion is imposed
the solid dipped into the liquid bath. Such a system exhib
hysteresis in the average position of the contact line, thu
the contact angleu.

In the quite different domain of seismic faulting, Scho
@26# proposed considering analogous distance for interp
ing the depth dependence of the ‘‘critical slip distance,’’
crucial feature for earthquake modeling. However, the ar
ment proposed in this last reference is based on the ela
mating of the two facing surfaces which is shown to occ
above a pressure-dependent wavelength. The identifica
betweenj and the maximum wavelength of the elastica
deformed fault is not firmly established but rather argued f
using criteria such as ‘‘complete renewal of contact popu
tion.’’ Although the conclusions may be qualitatively com
pared to that of our model~the critical slip distance result
from the competition of the surface topography and the e
tic coupling and is not intrinsic to the material or surfa
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topography!, the approach to the problem is quite differe
and any further comparison appears difficult.

VIII. CONCLUSION

The friction law involving asperity behavior appears to
an idealization of phenomena occurring close to the in
face, and the bulk properties of the solid can never be
gotten. We have presented a model where the effective
tion law results from the competition of the rando
interaction potential on the surface and the elastic prope
of the solid~here reduced to the elastic coupling between
asperity and the center of mass of the solid!.

In the apparently simple case of a single asperity driv
quasistatically on a rough track, we have shown the ex
ence of a well-defined scalej which separates two distinc
regimes. This length scale emerges from the competition
tween the elastic coupling and the rapidly varying rand
force field affecting the asperity. It depends on the stiffn
of the slider as well as on the roughness exponentz charac-
terizing the long-range correlations of the roughness of
rigid track. It is to be noted that the underlying force fie
was chosen here as scale invariant so that no intrinsic le
scale was initially included in the interacting potential,
contrast to previous models.

Although our model is purely elastic, the global behav
is plastic, with a hardening taking place statistically ove
ri

oli
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scalej. After the slider has traveled a distance of orderj, the
friction force reaches a nonzero average, although a sp
average of the random forceF is null. This difference comes
from the bias introduced by the uneven distribution of t
position of the asperity.

The persistence of a hysteretic behavior even in the ‘‘e
tic’’ part of the force-displacement curve comes from t
randomness of the pinning force. The long-range correlati
of this force allow the slider to advance elastically. In t
case of an uncorrelated surface, such an elastic regime
not exist.

Memory effects are analyzed for cyclic loadings, and it
shown that the real amplitude of motion of the asperity
much smaller than that imposed on the center of mass of
slider, for amplitude smaller than the characteristic scalej.
Below this scale, the behavior of the system is seen to p
serve statistical information on the roughness of the tr
and to be affected by its history.
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